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Chapter 6

Thesis summary for non-specialists:

Interpreting the vibrational dance in

CH3O and CD3O using spectroscopy

This chapter is submitted as part of the Wisconsin Initiative for Science Literacy

In this chapter, I outline the fundamental science research undertaken as part of

this thesis, as well as its potential application to society. I have tried to provide a cursory

glance into the kind of questions asked in my research field, and how we can go about

answering them. I have stated some of the results and hope that the reader perceives

some of the excitement that drives my research. I have not avoided usage of technical

words from this chapter; they are important to appreciate the results. But I have tried to

explain them using examples that we can relate to in our daily lives, I hope that the reader
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will learn to appreciate the thought process behind tackling such research questions.

To understand and control reactions is a chemist’s dream. Past few decades has

seen a phenomenal growth in laser technology, allowing design of better experiments

that can literally ‘track’ the formation of products in a reaction. Understanding vibrations

is critical to understanding reaction mechanisms, because often, thermal energy may not

be enough to make a reaction happen; energy put in a particular molecular vibration

will! The research in this thesis aims to study the vibrations of methoxy (CH3O) family

of molecules. These molecules are important to the society because they form part of a

family of reaction intermediates called alkoxy radicals. Radicals are short-lived species

formed in intermediate step(s) of many reactions and alkoxy radicals are known to be

intermediates in a plethora of atmospheric and combustion reactions. Because they are

so short-lived (of the order of µs or so) they are hard to isolate and characterise experi-

mentally. Theory therefore can play a complimentary role in understanding properties of

these reactive species. The study of methoxy vibrations brings up fundamental research

questions on its own, and traveling the road towards answering them is a rewarding jour-

ney by itself. The stimulating part of development of our theory is in identifying many

special properties of methoxy, and learning to use them to build a predictive model of

its vibrational spectroscopy. In the rest of the chapter, we hope that we have provided a

flavour of the challenges we faced in the journey of the research in this thesis.
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6.1 Introduction

6.1.1 As is Newton’s equation to a ball, so is Schrödinger’s equation to

an atom

Werner Heisenberg, a German physicist (who along with Erwin Schrödinger laid the

foundations of Quantum theory) said:

”It is not surprising that our language should be incapable of describing the processes oc-

curring within the atoms, for, as has been remarked, it was invented to describe the experiences

of daily life, and these consists only of processes involving exceedingly large numbers of atoms.

Furthermore, it is very difficult to modify our language so that it will be able to describe these

atomic processes, for words can only describe things of which we can form mental pictures, and

this ability, too, is a result of daily experience. Fortunately, mathematics is not subject to this

limitation, and it has been possible to invent a mathematical scheme the quantum theory which

seems entirely adequate for the treatment of atomic processes.”

Quantum theory provides us the mathematical tools we need to understand the

microscopic world of atoms and molecules. Molecules are nothing but groups of atoms

‘glued’ together via bonds. Like a macroscopic object such as a ball, molecules can trans-

late and rotate as a whole. The bonds behave like springs and the atoms forming the

bond vibrate about their equilibrium positions. The difference between a molecule and

a macroscopic object, however, is that the latter can have any amount of translational,

rotational or vibrational energy; the former has only certain allowed values. Quantum
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mechanics is the physical theory explaining the existence of these allowed ‘energy levels’

in molecules. The total energy of a molecule is said to be ‘quantised’. To obtain these

energy levels, or specific energy values, we use the Schrödinger’s equation. For a ball,

solution of Newton’s equation of motion tells us where the ball will be at any point of

time in future given its initial position and velocity; we obtain the so-called ‘trajectory’

of the ball in space. By solving the Schrödinger’s equation, we obtain energy ‘eigenfunc-

tions’ that will contain all the spatial and time information about the molecule or atom.

When we substitute these eigenfunctions back into the Schroödinger equation, we obtain

energy ’eigenvalues’. We will use the word ‘state’ and ‘eigenfunction’ interchangeably in

the rest of the chapter.

Any object possesses a certain amount of energy, and can be broken down into ki-

netic and potential energy. For an object such as a ball, Newton’s equation tells us how

to calculate the potential (V) and kinetic (T) energy knowing the position and velocity of

the ball. The total energy of the molecule is the energy ‘eigenvalue’ obtained by solving

Eqn. 6.1. H is called the Hamiltonian, E is called the energy eigenvalue and Ψ is called

the energy eigenfunction. An atom is formed of a nucleus and electrons. The bonds in

molecules are formed by electrons. Electronic energy is also ‘quantised’ and so is the

‘spin’ associated with each electron. The spin is a completely quantum-mechanical prop-

erty, but is often explained in a way similar to how an electron behaves like a spinning top.

For purposes of understanding this thesis work however, it is sufficient for us to know

that there exists a quantity such as spin ‘S’, and it has a value of ‘1/2’. Every atom of
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molecule has a certain value of total spin (written as 2S+1) associated with it. The energy

eigenfunction(Ψ), in general, is a function of nuclear and electronic spatial coordinates,

spin and time (in time-dependent Schrödinger equation); the energy eigenvalue (E) is a

number denoting the total molecular energy.

HΨ = EΨ (6.1)

H = Hel + Hnucl (6.2)

HelΨel(R) = Eel(R)Ψel(R) (6.3)

In language of quantum theory, in order to solve the Schrödinger equation, the first

step is to write down the Hamiltonian. Without going much into the Quantum theory jar-

gon, we only need to know that the Hamiltonian contains mathematical expressions such

as derivatives (similar to Newton’s equation, which contains second order derivatives

with respect to time) written using a set of postulates. As it turns out, the full molecular

Schrödinger equation is too complex to solve, and the heartening fact is that we can make

some very good approximations to make our life easier. One of the simplest approxima-

tions is to assume that the electronic, vibrational and rotational motions do not ‘talk’ to

each other. Simply put, when the molecule is vibrating, it is not rotating. The electrons

being ∼ 2000 times lighter than a proton move much faster and hence only ‘see’ a static

arrangement of nuclei in the molecule. This is the Born-Oppenheimer approximation.

Mathematically speaking, we write the Hamiltonian as a sum of 2 quantities- electronic

and nuclear (Eqn. 6.2). This works remarkably for a large set of molecules. A typical
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starting point to calculate molecular energy levels is to solve the electronic Schrödinger

equation (Eqn. 6.3) first at fixed nuclear geometry or arrangement of nuclei and repeat this

for many more geometries. Eel gives us the electronic energy of the molecule for some

nuclear configuration, consisting of bond lengths and bond angles, R. Repeating the so-

lution process for different R’s gives us the molecular potential energy surface (PES). The

set of eigenfunctions {Ψel} represents different electronic states and each electronic state

is associated with a different PES.

6.1.2 Breakdown of Born-Oppenheimer approximation: Nuclei ‘move’

faster than we think!

As it happens with approximations in any theory, there are limits where they will break

down. This is true for CH3O and CD3O radicals. In Eqn. 6.3, the eigenfunction associated

with the lowest energy eigenvalue is called ‘ground electronic state’ and is often well-

separated from the higher electronic states. Every so often, it happens that two PES come

close to each other. When this happens, the electronic states associated with the 2 surfaces

start ‘talking’ to each other. This interaction, which we have conveniently assumed to be

non-existent in the Born-Oppenheimer picture has to be accounted for. In other words,

electrons do not ‘see’ a static picture of the nuclei anymore, they can ‘see’ nuclei ‘move’!

The electronic and nuclear motion have to be solved together now, since the electrons do

not necessarily adjust as instantaneously to changes in nuclear coordinates as we expect.
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The meeting of PES have far reaching implications in understanding events as common as

vision. Many chemical reactions take place faster or slower often due to interaction of two

different PES, and it is only recently that laser technology has progressed significantly to

probe reactions at the molecular level.

The breakdown of Born-Oppenheimer approximation in the ground electronic state

is common in what are called ‘open-shell’ molecules. In many possible ways of classifying

molecules, a common way is to arrange all the electrons in molecular orbitals (orbital de-

notes electronic energy level) and ask whether there are unpaired electrons. Each orbital

can accommodate two paired electrons, one with a spin ‘up’ (1/2 denoted as up arrow)

and other with spin ‘down’ (-1/2 denoted as down arrow). In methoxy, it so happens that

there is one unpaired electron, and hence is an open-shell molecule. If all electrons are

paired up, the molecules are classified as ‘closed-shell’ molecules.

Fig. 6.1 is a 3-D plot of PES of methoxy as a function of motion of CO bond around

the z-axis. The point marked as C3v denotes the intersection of two potential energy sur-

faces. The electronic states of upper and lower surfaces have the same energy and are said

to be ‘degenerate’. If two states have the same energy, then we have a double degeneracy.

In molecular theory, the letter ‘E’ (meaning double degeneracy; German, entartet) is used

as a label for such states. The double degeneracy can be clearly understood by examining

the possible arrangement of electrons in the molecule. In Fig. 6.2 we show the outermost

atomic orbitals of oxygen atom. Methoxy has 17 electrons in total. Among the valence

electrons of oxygen in the 2p orbitals, one is a lone pair, one of the 2 unpaired electrons
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pairs up with an unpaired electron from carbon to form C-O bond (denoted by red ar-

row paired with black arrow). From the figure, it is clear that there are two energetically

equivalent configurations possible for the ground electronic state. This is the reason we

use the label ‘E’.

Figure 6.1: 2-D PES of methoxy. The nuclear motion involves rotation of CO bond around

the z-axis.

Figure 6.2: Orbital degeneracy in ground state of methoxy.

We will return to the PES of methoxy, once we have more background in under-
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standing symmetry. For now, we know that methoxy has an orbitally degenerate ground

electronic state. The interaction of 2 electronic states is one of many types and all of them

together are termed as vibronic interactions; in this thesis, we are interested in under-

standing ‘Jahn-Teller’ type of interactions. Although the Born-Oppenheimer approxima-

tion involves separation of electronic from nuclear motion, and nuclear motion involves

vibrational and rotational motion, we choose to first build a theory to study electronic

and vibrational motions only. To make the problem tractable, we choose a molecular

Hamiltonian with zero rotational energy or a non-rotating molecule.

Another important interaction in methoxy is the spin-orbit interaction, involving

the interaction of spin and orbital motion of electron. Loosely speaking, the orbital motion

of electrons around the nuclei can be compared with motion of planets around the sun.

The spin-orbit interaction involves interaction between the spin of the electron with its

orbital motion.The two effects (Jahn-Teller and spin-orbit) together profoundly affect the

forces within the molecule and we will soon see just by how much.

Spectroscopy provides the tools we require to probe the molecular structure ex-

perimentally. It involves shining light on molecules, and ‘watching’ the atoms dance

in reaction to the incident light. The energy level structure depends not only on the

molecule, but also whether it is electronic, vibrational or rotational motion. For example,

UV-Visible spectroscopy is a tool to probe the electronic energy level structure, Infrared

(IR) spectroscopy probes the vibrational levels and microwave, the rotational levels. We

will provide more background on spectroscopy to understand the results in this thesis.
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6.1.3 Aims of this thesis

We have studied two types of spectra. One involves the ground electronic state (denoted

as Ψgs
el (R) from Eqn. (6.3)) and excited state denoted as Ψes

el (R). There are many fancy

techniques available to map energy levels in the two electronic states. There are many

experimental techniques that can study these two electronic states by shining infrared

or uv-visible light. We will not go into the details of these fancy techniques here, since

we are making a theoretical attempt to model the spectra. The methods in these fancy

techniques only differ in detail in method of obtaining the energy level information. The

ultimate goal is map out the energy level spacings in the two electronic states. Our aim

is to reproduce these two types of spectra theoretically and interpret them in terms of the

effect of Jahn-Teller and spin-orbit interactions on the spectra.

Studying isotopologues of a molecule (measuring spectrum of molecules by re-

placing various atoms of the molecule with its isotopes) is an extremely useful way to

determine molecular structure. The skeleton (bonding pattern) of the molecule remains

the same, but we get more information about the effect of the isotope on the molecular

properties, such as the differeces in nature of vibrational dances in the molecule. CH3O

and CD3O have the same type of vibrations and an analysis of their spectroscopy can

provide complimentary and supplementary understanding of their vibrations. Hence we

have investigated the spectroscopy of both CH3O and CD3O in this thesis.
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6.2 Theoretical Background

6.2.1 Symmetry in molecules: A theorists’ aid in interpreting experi-

ments

A knowledge of group theory is usually necessary to grasp and appreciate the elegance

of theoretical foundations of spectroscopy. However, we use only basic aspects of group

theory in our models that can be explained using simple examples as follows. We assume

that the reader has a basic knowledge of vectors and matrices.

Nature exploits symmetry in countless number of ways; in both living and non-

living forms. Flowers are common symmetrical objects, with petals arranged in ways

ranging from triangular symmetry (each petal is 120◦ with respect to the other) to circular

symmetry. Molecules can take symmetrical shapes too, depending on the types of atoms

present. To understand how we use symmetry in our theory, we talk about ‘transforma-

tion’ of various quantities such as potential energy, molecular dipole moment etc under

the influence of rotations. To understand what the word ‘transformation’ means, we di-

rect the reader to Figs. 6.3 and 6.4. In Fig. 6.3, we rotate a vector ~r1 by 120◦ giving rise to a

new vector ~r2. This is a 3-fold rotation of ~r1 and is denoted as C3~r1. In the 2-D plane used,

the vectors can be written in terms of x, y components as
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Figure 6.3: 2π/3 rotation of a vector in a 2-D plane.

~r1 = xî + yĵ (6.4)

C3~r1 = ~r2 =

cos(2π/3) − sin(2π/3)

sin(2π/3) cos(2π/3)

~r1

(6.5)

When it comes to understanding rotations, a clever mathematical trick is to recast a

given position vector (for e.g., ~r1) as a complex number ‘z’. The 2-D plane is now formed

by real and imaginary axes along x and y respectively. The x component is along the

real axis and y component is along the imaginary axis. In the complex representation

of a vector, the polar or trigonometric form is particularly useful, as we will see in a

moment. Equation 6.6 also uses the Euler formula relating the exponential function to the

trigonometric functions (introduced in 18th century by Leonhard Euler)

z = x + iy

z = r1(cos φ + i sin φ) = r1e
iφ. (6.6)

A position vector has magnitude and direction. The rotation of a vector in a 2-D
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plane involves multiplication of a 2×2 matrix as shown in Eqn. 6.5. The rotation matrix

itself is replaced by another complex number, z′ = ei2π/3. This is because, z′ represents a

unit vector rotated from the x-axis by 120◦ (The determinant of the 2×2 matrix is 1, and

is the magnitude of the complex number z′). So just by changing our notation to that of

a complex polar representation, the rotation of a vector is just multiplication by another

complex number. So we rewrite Eqn. 6.5 as

C3~r1 = ei2π/3~r1

= ei2π/3r1e
iφ = r1e

i(φ+2π/3) = ~r2 (6.7)

It is now obvious that if we wish to carry out an clockwise rotation of the vector ~r1

we multiply by e−i2π/3. Such is the elegance of the complex representation and we exploit

this in building our model Hamiltonian and Dipole moment operators.

Figure 6.4: Top-down view of methoxy along CO bond (z-axis).

In methoxy, the 3-fold symmetry is apparent when we view the molecule along

the CO bond at the 3 H in Fig. 6.4. The 3 H transform into each other on 120◦ rotation.

Hence the potential energy of the molecule has to be the same under 3-fold rotation. In
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an equation form, we write this as

C3V = V (6.8)

This is true of the Hamiltonian as well.

The geometry shown in the left of Fig. 6.1 has an axis of symmetry (3-fold axis, also

called C3 axis) along the z-axis (vertical axis) involving a 120◦ rotation. As the CO bond

tilts away from the C3 axis, the electronic energies of the 2 states are different and we

obtain a 3-fold symmetric surface as shown. This makes sense, because looking down the

CO axis on the left geometry, the 3 H are equivalent and so the potential has to be 3-fold

symmetric. The picture is a classic example of how Jahn-Teller interaction brings about a

symmetry breaking process.

The dipole moment is another quantity like the Hamiltonian that is crucial for un-

derstanding the spectroscopy of molecules. There are two types of dipole moment - Per-

manent and Transition dipole moment. Dipole moment basically refers to the asymmetric

distribution of positive and negative charges on a molecule. If we take the example of a

diatomic molecule like H2, due to a symmetric charge distribution of positive (charge due

to nucleus) and negative (charge due to number of electrons) charges, the dipole moment

is zero. On the other hand, a molecule like HCl, there is more negative charge on Cl than

on H; hence the molecule is ‘polar’ and possesses a dipole moment with a ‘+’ charge to-

wards H and ‘-’ charge towards Cl end. Methoxy is also a polar molecule and possesses a

dipole moment. We care about dipole momemt, because they help us write down ‘rules’

that determine molecular transitions when light is shone on a sample. We state these
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rules in a later section. To understand the spectroscopy of the ground electronic state, we

care about the permanent dipole moment. To do the same of the excited state (Ã2A1) we

care about the transition dipole moment. The word ‘transition’ in the latter type of dipole

moment really means transition between two electronic states, since in all kinds of molec-

ular spectroscopy, there is always transition between two states. But for sake of clarity

in distinguishing the two types of spectroscopy in methoxy, we will use the traditional

language as I have stated. When the molecule makes a transition from one electronic

state to another, its charge distribution changes (as we can imagine if we an electron is

removed from CO bond and ‘placed’ in an orbital perpendicular to the CO bond) and

this is characterised by the transition dipole moment.

The dipole moment is a vector quantity and has components µx, µy and µz. Each

transforms in its own way under C3 operation. In the same frame of reference as we used

in Fig. 6.4 (the z-axis is pointing towards us out of the plane of the paper), let us look at

the transformation of the dipole moment vector.

~µ = µxî + µy ĵ + µzk̂ (6.9)

C3µx = −1

2
µx +

√
3

2
µy (6.10)

C3µy = −
√

3

2
µx −

1

2
µy (6.11)

C3µz = µz (6.12)

However if we switch to a complex plane picture, we see that the following holds
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true:

µ± = µx + iµy (6.13)

C3µ± = e±i2π/3µ±. (6.14)

This is a fundamental symmetry property of the molecule and whether we talk

of electronic or vibrational or rotational degrees of freedom, the different mathematical

quantities such as H, µ and wavefunctions have well-defined transformation properties

under 3-fold rotation. For studying rotational energy level structure, we also have to take

into account reflection symmetry, but we will not discuss that at the moment, since we

are only interested in building a vibronic model. The key message from this subsection is

the exploitation of 3-fold symmetry and complex representation to build our theoretical

model.

6.2.2 Spectroscopy: A tool to ‘watch’ atoms dance

All types of spectroscopies are based on interaction of light belonging to some region of

the electromagnetic spectrum with molecules and the experiment involves obtaining a

plot of the response of the absorbance or transmittance of light as a function of wave-

length or frequency. A molecule’s spectrum is its signature, and contains hidden infor-

mation about the static and dynamic molecular structural properties. Spectroscopy is a

qualitative and quantitative tool to detect, identify and quantify chemical species. It is

common practice to detect organic compounds using infrared spectroscopy, because a
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vibrational spectrum of a molecule has peaks corresponding to different types of bonds

present in the molecule (for e.g., CH, CO, OH, NH bonds etc), and hence is a unique re-

flection of the molecular structure. Arnold Sommerfeld, yet another German Physicist

(who pioneered many developments in quantum physics) said:

”Quantum theory is the mysterious organ on which Nature plays her music of the spectra,

and according to the rhythm of which she regulates the structure of the atoms and nuclei.”

This succinctly tells us how interweaved the theories of spectroscopy and quantum

are. In order to appreciate this, we look at the central concept of ‘resonance’.

In macroscopic systems such as pendulums, or systems that oscillate, if they are

driven at their natural or ‘resonant’ frequency, they absorb more energy and tend to ex-

ecute large amplitude oscillations. Other examples of such mechanical resonances are

bridges and buildings, and musical instruments (acoustic resonance). A plot of ampli-

tude versus excitation frequency will have a peak centered at the resonant frequency

and the peak is called a spectral line. In quantum mechanical systems such as atoms

and molecules, a resonance is coupling of light (formed of particles or packets of energy

called photons, of a particular frequency ν) and two atomic or molecular ’energy’ states

that differ by an energy corresponding to the same frequency (∆E). In other words,

∆E = hν. (6.15)

In language of spectroscopy, a particular pair of states in resonance with incident photon

is said to bring about a ‘transition’ of the molecule or atom from lower to upper energy

level. Each peak in a spectrum might consist of overlapping transitions with contributions
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from pairs of rotational, vibrational and/or electronic states. Relatively speaking, the

electronic energy levels are the farthest apart, followed by vibrational levels and then by

rotational levels. In molecular spectroscopy theory, a particular rotational transition is

called a spectral line (lowest frequency among the 3), a rovibrational transition is called a

band (which consists of a series of rotational lines) and a rovibronic transition is called a

band system (which consists of a series of bands and rotational lines within each band).

In this thesis, we care only about vibronic transitions or band positions and intensities of

these bands in a given band system.

As mentioned in introduction, we are interested in mapping out the vibronic level

structure of the ground and excited electronic states Ψgs
el and Ψes

el . In the language of

spectroscopy of polyatomic molecules, the former is denoted as X̃ and the latter as Ã.

The X̃ PES, as we saw in Fig. 6.2 has ‘E’ symmetry. The symmetry label for Ψes
el used

is A1, because in this electronic state, only one electronic arrangement in the molecular

orbitals is possible. This is because, roughly speaking, one of the two electrons forming

the CO bond is promoted to the orbital with the odd electron (refer Fig. 6.2). As a result,

the double degeneracy is lost, and the electronic state is non-degenerate. The symbol A1

comes from group theory and the details of its origin is not relevant here. It is merely a

label for our purposes. We have seen that methoxy has one unpaired electron, and so has

2S + 1 = 2 denoted in the superscript. This is true of the X̃ and Ã electronic states. We

therefore have the following labels for the 2 electronic states of interest - X̃2E and Ã2A1.

A well-known method of characterisation of methoxy radical is its electronic ab-
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sorption spectrum, also called LIF excitation spectrum. This spectrum involves the UV-

Visible portion of the electromagnetic spectrum, and involves excitation of the molecule

from X̃2E state to Ã2A1. Extensive experimental studies have been carried out to char-

acterise the radical using infrared spectroscopy as well, and we explain the challenges of

such an attempt in the results section.

6.2.3 Vibrational resonances

Before we move on to the results, we need to understand a second type of resonance

important to vibrational spectroscopy - Fermi resonance. In general, there are two types

of vibrations in molecules - stretching and bending vibrations. The vibrational states are

labeled using vibrational quantum numbers v = 0, 1, 2 . . .. A transition involving v = 0

and v = 1 pair of states is called a fundamental transition, and v = 0 and v > 1 pairs of

states are called overtones. A transition involving two independent vibrations are called

combination bands.

Every so often, it so happens that a pair of vibrational states belonging to one nor-

mal mode has the same or nearly the same energy as another pair of vibrational states

from a different normal mode. For example in water, it so happens that a pair of ‘stretch’

vibrational states accidentally have the same or nearly the same energy as that of a pair

of ‘bend’ vibrational states. Fermi resonance in this case therefore involves nearly per-

fect match of energies of the OH stretch fundamental and H2O bend overtone states. A

second condition also needs to be satisfied, which is more technical; we are merely con-



20

cerned with the consequence of such a phenomenon and shall not go into details here.

The consequence of such a resonance is the 2 peaks in the actual spectrum do not appear

at the expected positions, they appear farther apart than expected, and the 2 peaks have

intensities different from that predicted without including the interaction. This is shown

schematically in Fig. 6.5. As seen in the figure, the weaker peak grows at the expense of

the stronger peak. Such a sharing of intensities among the two sets of vibrational states is

common in polyatomic vibrational spectra.

Figure 6.5: Effect of Fermi resonance interaction on vibrational spectrum.

There exists other kinds of interactions in vibrational spectroscopy, which couple

vibrational states not necessarily in resonance. These also contribute to various features

in the molecular spectrum.
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6.2.4 Normal mode representation of vibrations

Given that we have the experimental spectra, and the theoretical tools to calculate spectra,

the interpretation of the different peaks and intensities is commonly carried out in ’‘nor-

mal mode representation’ of vibrations. We talked about describing molecular vibrations

in terms of extensions and compressions of internal coordinates such as bond lengths and

bond angles. In reality, the molecule is executing some complicated motion involving all

kinds of vibrations. How do we build simple physical pictures of such motions and anal-

yse the spectra? It so happens, that by doing certain mathematical tricks (transformation)

of internal coordinates to ‘normal coordinates’ complex concerted motions of atoms in

the molecule can be described (mostly) in terms of displacement of the molecule along

‘normal coordinates’. Here is a short example of how a theorist’s’ life becomes simpler by

such a transformation.

The example below has been adopted from book on vibrations by Wilson, Decius

and Cross.5 For a single spring that executes simple harmonic oscillations about an equi-

librium value, the potential and kinetic energy of the spring is given by

V =
1

2
F (x− xe)

2 =
1

2
F (∆x)2

T =
1

2
m(∆̇x)2 where (6.16)

∆̇x =
d(∆x)

dt
.

For a system of two coupled harmonic oscillators as shown in Fig. 6.6 (with two point

masses m1,m2 and weightless springs allowed to move along x direction only), the poten-
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tial energy is given by

r1 = x1 − x1,e

r2 = x2 − x2,e

V =
1

2
F1r

2
1 +

1

2
F2r

2
2 + F12(r2 − r1)

2 (6.17)

T =
1

2
m1(ṙ1)

2 +
1

2
m2(ṙ2)

2where (6.18)

ṙ1 =
dr1

dt
and ṙ2 =

dr2

dt
. (6.19)

Figure 6.6: System of 2 coupled harmonic oscillators.

Figure 6.7: Normal modes of 2 coupled harmonic oscillators.

For sake of simplicity, let us assume m1 = m2 = m and F1 = F2 = F . Solutions to

Newton’s equations of motion will give us the displacements of the 2 masses as a function
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of time. The solutions are called ‘normal modes’. The 2 normal modes are shown in

Fig. 6.7. The Hamiltonian is given by H = T + V . In terms of displacement coordinates,

the form of H is not a simple function of two variables and has a ‘mixed’ term, involving

both variables. In other words, it is not in a variable-separable form. Without going

into the details of the route to get the solutions, we note that by introducing ‘normal

coordinates’ Q1 and Q2 defined as

r′1 =
√

mr1 r′2 =
√

mr2

Q1 =
1√
2
(r′1 + r′2) (6.20)

Q2 =
1√
2
(r′1 − r′2), (6.21)

the Hamiltonian becomes

H =
1

2
Q̇1

2
+

1

2
Q̇2

2
+ λ1Q

2
1 + λ2Q

2
2, (6.22)

now a variable separable form. The pictures of the normal modes, when extended to

molecules, are built on very similar ideas. The vibrations in molecules are coupled to

each other. The normal modes of a molecule are good descriptions of the vibrations as

long as we approximate the vibrations to be simple harmonic oscillators.

A molecule has 3N coordinates (or degrees of freedom), N being the number of

atoms. Out of these, 3 degrees of freedom involve translation of the molecule as a whole.

A linear molecule has 2 rotational degrees of freedom and non-linear molecule has 3.

That leaves us with 3N-5 vibrational degrees of freedom for linear molecules and 3N-

6 for non-linear molecules. Methoxy has 9 vibrational degrees of freedom. Figure 6.8
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shows the normal modes in methoxy, where 3 are non-degenerate (labeled as a1, with

same meaning as electronic state label A1, meaning non-degenerate) and 3 are doubly

degenerate (labeled as e, named so because two vibrations of that type have the same

frequency).

Figure 6.8: Normal modes of CH3O.3

Normal modes are useful, because they are best of two worlds - we can build a

physical picture of each normal mode ‘mostly’ in terms of displacement along internal

coordinates, and they include simultaneous displacement of all atoms, a model much

more closer to reality than modeling one stretching or bending vibration. This is evident

in Fig. 6.8. We will be using normal mode representation to interpret the methoxy spectra,

and test how good such a description is.
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6.2.5 Anharmonicity: Bond-breaking and more

A simplistic picture of bonds in a molecule is to assume that they behave like harmonic

oscillators. Any spring, in the absence of a restoring force will have a resting position and

when we elongate the spring, the restoring force allows the spring to excecute oscillatory

motion about the resting position. If we trace the potential energy of the spring for various

displacements from equilibrium, we get a parabola corresponding to Eqn. 6.23 and shown

in Fig. 6.9.

V =
1

2
k(x− xe)

2 (6.23)

Figure 6.9: A simple harmonic oscillator

A bond behaves in a similar way, but only at low energies. As we put more energy

into a bond, their oscillations are ‘anharmonic’. This is because real bonds break and

cause dissociation of molecules. A more realistic potential to describe a bond, therefore
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cannot just have a quadratic term as shown in Eqn. 6.23, but also needs to include higher

order terms such as third order, fourth order etc. A more realistic potential of the bond

energy is shown in Fig. 6.10. Hence bonds are anharmonic oscillators. Another type

Figure 6.10: Anharmonic oscillator

of anharmonicity is between two types of vibrations. We saw how two oscillators can be

coupled to each other through a potential energy term involving displacements of both

the oscillators and couples the two equations of motion. Coupling between vibrations in

molecules happens in the same way and in methoxy potential, we have such terms that

couple different normal modes to each other. These terms are also termed as anharmonic

terms.

6.2.6 Selection rules: ‘Permission’ for molecules to get excited!

A selection rule tells us whether a transition of the molecule from one quantum state

(Ψi) to another (Ψf ) is allowed. Theoretically this is written in terms of an integral, for



27

which we need 3 quantities - the initial and final energy states (Ψi and Ψf ) and the dipole

moment function. Mathematically, (without worrying about other details in the equation

below such as dτ or ±∞momemtarily), this is stated as the following integral being non-

zero. ∫ ∞

−∞
ΨiµΨfdτ 6= 0 (6.24)

The dipole moment operator is in general a function of nuclear and electronic co-

ordinates. In this thesis, we have determined the functional form of the 3 components of

the dipole, µz, µ+ and µ− as a function of nuclear coordinates {Q}. In our model, we are

looking at transitions of methoxy among vibronic states. These states are labeled by the

vibronic quantum number, `. Without going into details, it suffices to say that there are 3

possible sets of ` states, labeled as 0,1 or 2. We have derived the following selection rules

for the 3 components of the dipole moment operator.

µz ∆` = 0

µ+ ∆` = +1

µ− ∆` = −1 (6.25)

Table 6.1 lists the initial and final state possibilities using the above selection rules.

We have decomposed the infrared and electronic spectra into these 3 types of transitions.

We will refer to the selection rules corresponding to µ± as perpendicular selection rules

and that of µz as parallel selection rule.
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Table 6.1: Selection rules for transitions among different ` states.

` µ+ µ− µz

1 2 0 1
2 0 1 2
0 1 2 0

Now that we have a flavour for some of the concepts that goes into developing

a theory of vibrations in methoxy, it will suffice to know that we ultimately calculate a

‘model’ energy level structure of the vibronic states in the X̃2E and Ã2A1. We then

calculate the 2 types of spectra and compare it to experiment. This is shown in the next

section, along with some of the key challenges we have faced in interpreting these spectra.

6.3 Results

As explained in Sec. 6.2.2, the electronic excitation of methoxy radical from X̃2E to Ã2A1

involves removing an electron from the CO bond. Hence the CO bond becomes weaker,

or longer. Also there is less bond-bond repulsion between CO and CH bonds and causes

increased planarity of the CH3 group. In the experimental spectrum, such a change in

electronic arrangement causes significant excitation along the CO stretch and CH3 group

vibrations. Figure 6.11 shows the lower energy portion of the electronic spectrum. The

spectrum is labeled in terms of ‘progressions’ or peaks corresponding to different levels

of excitation of CO stretch vibration, namely v = 0− 1, v = 0− 2, v = 0− 3 etc. Typically

experiments are carried out at very low temperatures (< 25K), and all the molecules in
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Figure 6.11: LIF excitation spectra of CH3O: (a) Experiment2,4 (reproduced with permis-

sion) (b) and (c) Theory

the sample are assumed in their ground states, i.e., v = 0 (subscript in the figure denotes

initial vibrational state in X̃2E); the superscript in the figure denotes the final vibrational

state (in Ã2A1) to which the molecule is excited to. The CO stretch vibration is labeled by

normal mode number 3.
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Figure 6.12: LIF excitation spectra of CD3O: (a) Experiment1 (reproduced with permis-

sion) (b) Theory

A key difference between the experimental CH3O and CD3O spectra is the pres-

ence of doublet features in CH3O spectrum. This is due to a strong Fermi resonance inter-

action between CO stretch and CH3 umbrella vibrations. It so happens that, ν2 ≈ 2ν3 and

causes the transitions to vibrational levels of normal mode 2 to become more intense ‘at

the expense of’ intensity of mode 3 (recall background information on Fermi resonance).

We have captured the doublet features very well in our simulated spectrum.
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It also happens that the electronic excitation spectrum of methoxy has new features

that is otherwise not allowed in a spectrum of a closed shell species. These are peaks

labeled with modes 5,6 in the figures. They appear due to the presence of Jahn-Teller

effect in the molecule. By including vibronic coupling in our model, we predict these

features correctly in the calculated spectrum.

In Figs. 6.11 and 6.12, resolution of the spectrum into 3 types of transition is shown

in panel (b). Panel (c) in former shows the theoretical spectrum with the 3 component’s

contributions summed and added together. Overall, we can see that there is very good

agreement between theory and experiment. In a more detailed analysis (chapter 4), we

have examined the relative intensities between the peaks more closely. We believe that the

differences between theory and experiment as far as the relative intensity is concerned, is

possibly due to poor estimate of the molecular dipole moment using electronic structure

theory methods. Our theory captures the features of both CH3O and CD3O spectra very

well, and we have perfect agreement in terms of peak positions.

H = HHO + δW (6.26)

We have examined (chapters 2 and 3) in detail the vibronic level structure of the

X̃2E state. Equation 6.26 separates the Hamiltonian into a harmonic part and anharmonic

parts. The harmonic part includes vibronic coupling up to second order. The correlation

diagrams show the evolution of the energy eigenvalues as a function of the parameter δ

that slowly increases the amount of anharmonic coupling from 0 to 1. Figures 6.13 and



32

Figure 6.13: Correlation diagram for CD3O as a function of δ.

Figure 6.14: Correlation diagram in CH stretch region of CH3O.

6.14 illustrate how the normal modes of CH3O and CD3O mix with each other as we

include more and more anharmonic terms in the Hamiltonian. The IR spectrum incor-
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porates the full Hamiltonian (δ = 1) and an attempt to assign the spectrum, i.e., label the

peaks using normal mode quantum numbers is futile. The ground state spectroscopy and

dynamics of CH3O and CD3O is therefore very complex, and such analysis shows why

this family of radicals still continues to pose challenges for theorists and experimentalists

alike.

6.4 Concluding remarks

Many mysteries in the spectroscopy of CH3O and CD3O still remain, and one could ask,

what happens when we replace only 1 or 2 H by D? The radicals CH2DO and CHD2O

have also been studied experimentally, and a theoretical analysis will likely help us un-

derstand some of the congestion in the spectra of the symmetric analogs better. It could

also be useful to examine other members of the CX3Y family, to understand the effect of

vibronic and anharmonic interactions better on the positions and intensities of the peaks

in both infrared and electronic spectra.

In this thesis, we have deepened the understanding of X̃2E and Ã2A1 vibronic

levels and transitions. A detailed examination of the Hamiltonian and dipole moment

operators’ role in spectroscopy of methoxy has helped uncover the molecular forces re-

sponsible the complex spectroscopy. We believe that a systematic theoretical approach

like ours will provide insights into vibrational spectroscopy of similar systems and serve

as a stepping stone to build models to understand their reaction dynamics.
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