
Communicating Research to the General Public
The WISL Award for Communicating PhD Research to the Public launched in 2010, and since then over
100 Ph.D. degree recipients have successfully included a chapter in their Ph.D. thesis communicating their
research to non-specialists. The goal is to explain the candidate’s scholarly research and its significance—as
well as their excitement for and journey through their area of study—to a wider audience that includes family
members, friends, civic groups, newspaper reporters, program officers at appropriate funding agencies, state
legislators, and members of the U.S. Congress.

WISL encourages the inclusion of such chapters in all Ph.D. theses everywhere, through the cooperation
of PhD candidates, their mentors, and departments. WISL offers awards of $250 for UW-Madison Ph.D.
candidates in science and engineering. Candidates from other institutions may participate, but are not eligible
for the cash award. WISL strongly encourages other institutions to launch similar programs.

The dual mission of the Wisconsin Initiative for Science Literacy is to promote
literacy in science, mathematics and technology among the general public and
to attract future generations to careers in research, teaching and public service.

Contact: Prof. Bassam Z. Shakhashiri

UW-Madison Department of Chemistry

bassam@chem.wisc.edu

www.scifun.org

mailto:bassam@chem.wisc.edu
http://www.scifun.org/

DISTRIBUTING DEEP NEURAL NETWORK INFERENCE ACROSS
EDGE-HUB-CLOUD SYSTEMS

by

Robert Viramontes

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Electrical and Computer Engineering)

at the

UNIVERSITY OF WISCONSIN–MADISON

2025

Date of preliminary examination: May 7, 2025
The dissertation is approved by the following members of the Final Oral Committee:

Azadeh Davoodi, Professor, Electrical and Computer Engineering
Umit Ogras, Professor, Electrical and Computer Engineering
Je!rey Linderoth, Professor, Industrial and Systems Engineering
Mahesh Sharma, Fellow, Tenstorrent

115

!" #$%&’() *+) ’$(&,-./#

In this chapter, I present my research in a form geared towards a general public

audience. My work has been supported by the public through programs like the

National Science Foundation and I hope to make the results of my work more

accessible. Access to knowledge is a powerful tool in developing an engaged

and compassionate society, and I am proud to contribute in my own small way.

Many thanks to editor Elizabeth Reynolds for thoughtful remarks, and to Professor

Bassam Shakhashiri and Cacye Osborne at the Wisconsin Initiative for Science

Literacy for supporting this program!

10.1 Background on Artificial Intelligence (AI)

Nowadays, many of us are familiar with interacting with artificial intelligence (AI)

programs in our everyday life. You might use Grammarly to help draft and revise

an email or Google’s Gemini to generate a logo for your sports team. All of these

modern AI tools rely on a fundamental invention: the neural network.

The neural network is, at least in computing terms, an ancient idea with the

first generation developed in the 1950s. As you might suspect based on the word

“neural”, these computer programs are inspired by the brain and use digital “neu-

rons” to process information. Much like our brains process what our eyes see, early

neural networks focused on processing pictures to recognize handwriting.

Many factors contribute to the success of modern AI tools, but one of the key

insights, which occured around 2012, was “deep” neural networks (DNNs). I like

116

Noodle

Sauce

Cheese

Noodle

Sauce

Cheese

Linear

Pooling

Activation

Linear

Pooling

Activation

Figure 10.1: A lasagna (left) is a bit like a deep neural network (right). Both
are composed of multiple layers of di!erent types, with each contributing
something important to the final outcome.

to think about this like one of my favorite foods, lasagna! Similar to a lasagna

which might have layers of noodle, sauce and cheese, a DNN uses di!erent layers

of operations for di!erent e!ects. Also like a lasagna, a DNN of one layer isn’t

particularly good, so we build up multiple layers to improve them!

As the lasagna gets more and more layers, we need larger and sturdier pans

to bake in. If we have hundreds of layers, we might even need to look at moving

to some industrial oven equipment. The story is similar for DNNs, where small

models with few layers might work on our phones or laptops, but the latest and

greatest (and largest) require industrial-sized computers in datacenters.

As we have watched the rapid evolution of AI tools in the past few years, I

have been very concerned about the impact of their high energy use and potential

for carbon emissions. Understanding how to minimize these impacts has been

a very interesting question to explore, both from a technical perspective and its

social merits. My approach to this problem has been to split those layers up to

utilize multiple computers for DNNs. It would be like baking layers of the lasagna

117

separately, and only stacking them up at the end when it’s ready to serve. I call

this layer assignment, trying to find which layer is best assigned to which device.

My research has shown that we can use this technique to improve latency (speed),

energy (battery life), privacy (keeping control of your data), and carbon emissions

(sustainability).

10.2 What’s in a Layer

Before we can begin assigning layers to a computer, we need to know a bit more

about what’s happening in each layer. I primarily consider the latency to compute

the layer and the energy to compute the layer, key metrics in many computer

systems.

• Latency is the amount of time it takes to compute a layer from start to end.

This is measured in milliseconds.

• Energy is the amount of work that the computer must do to compute a layer

from start to end. This is measured in joules, though you may also be familiar

with measures like kWh on your utility bill or mAh on mobile phone batteries.

There are two typical ways to collect this data: using formulas to estimate and

directly measuring latency and energy on the device. For either, it is import to have

a rigorous and repeatable method because we need to measure for each computing

device in our system and the values must mean the same thing from device to

device. For instance, a smartphone will usually be slower than a desktop and might

118

use less energy, but we want to make sure that isn’t because of an error in the test

methods. Overall, I prefer to use the direct measurement approach because it tends

to be more accurate, but the formula approach can be useful for prototypes.

Figure 10.2 shows the setup in my lab for collecting latency and energy informa-

tion for an NVIDIA Jetson Nano. This setup includes the actual device, the NVIDIA

Jetson Nano, a SmartPower 3 power supply that I use to gather the energy data,

and a PC for logging and analyzing the data. You can see why setting this up for

every device is more complicated than plugging a few numbers into a formula!

Jetson Nano

SmartPower 3

Logging PC

Figure 10.2: The lab setup for measuring latency and energy used by the
NVIDIA Jetson Nano.

10.3 What’s the Deal With All These Computers?

So what about the computers that I’m assigning these layers to? Imagine a theoreti-

cal lasagna factory, like in Figure 10.3. This factory might have “smart” cameras

that monitor di!erent conveyor belts, some local computers for running the factory,

and Internet access to cloud computers.

119

BEST
LASAGNA

Wisconsin Cheese

Made With

Figure 10.3: Theoretical lasagna factory demonstrating the various types
of computing devices in a system and how they can communicate.

In my research, we call the smart cameras “edge” devices, the factory com-

puters “hub” devices, and the external cloud “cloud” devices. These are “small”,

“medium”, and “large” computers, respectively. Each of these devices has the ability

to do at least some of the work of computing the DNN. They are also all connected

in such a way that they can all talk to each other.

10.4 Useful Objectives

Now, we have to decide what to do with all of this information we’ve collected

about layers. I want to improve something about the AI system, so I want to express

an optimization goal. This is usually expressed as “minimize A subject to B”, which

means that we want to reduce A while staying within limits of B. “Subject to” is

optional, but often very useful as we’ll see. Say we wanted to bake a lasagna faster.

120

One approach could be to use only one thin layer, but as I said before, that’s not a

very good lasagna. So we could say “minimize bake time subject to having four layers”,

so we still have a good lasagna. We could then change oven temperature, baking

dish size, and baking dish material to minimize the bake time.

For DNNs, over the course of my research, I’ve identified a few useful optimiza-

tion goals when assigning layers:

1. Minimize latency: this minimizes the amount of time it takes to get an an-

swer back. This improves the user experience by giving a more interactive

experience with less wait time for the computer to “think”.

2. Minimize latency subject to privacy: a tweak of the previous goal, this mini-

mizes the amount of time to get an answer while providing additional data

privacy guarantees. This further improves the user experience by reducing

the amount of identifiable information shared.

3. Minimize energy subject to latency: this minimizes the amount of work put

in to compute the answer. The latency constraint is important to guarantee

that the user gets an answer back in a timely manner (as a professor I know

likes to say "minimizing energy is easy: just turn it o!!"). This improves the

user experience through reducing energy bills and improving battery life.

4. Minimize carbon subject to latency: a tweak on the energy goal, we look at

carbon emissions as a sustainability metric. This improves user experience by

reducing the environmental impact of running AI.

121

10.5 Finally, Some Results!

Preheating with Preloading

Over the course of my PhD, I’ve explored various approaches to achieve these objec-

tives. In my first project, we only looked at reducing latency. While investigating the

various causes of latency, we found a significant source we could hide with a clever

layer assignment. The layers in the DNN usually have some extra data associated

with them, called “weights”, that can take a long time to load. We proposed that

we could hide this by starting this loading process early, while another device was

busy computing another layer. We call this weight preloading.

In the DNN, the layers use the result of the previous layer. This means they

must be executed in a particular order, and only after the previous layer is finished.

This is a bit like if you couldn’t start on the next layers of lasagna in a second pan

until the first layers are done baking. However, with our layer assignment strategy,

we know before we start baking which layers will go in which pan and what order

the pans go in the oven. This means we can start building the layers while the

previous pan is baking, so it is ready to go into the oven right when the previous

pan comes out. While we still can’t fit multiple pans in the oven, we’ve overlapped

the baking time of the previous layer with the preparation time of the next layer to

hide that preparation time.

We explored this weight preloading idea with di!erent DNNs and di!erent

computing systems. In these experiments, we found a few interesting results:

122

• When the devices are good at talking to each other (the network has high

bandwidth), it’s easy for the smart cameras to send all the work to the cloud.

Weight preloading isn’t very useful in this case, because there aren’t opportu-

nities to overlap compute and weight loading (the industrial oven can bake

all the layers at once).

• When devices are bad at talking to the cloud (the network has lowbandwidth),

the small and medium computers tend to talk to each other quite a bit. Their

limited resources makes weight preloading more appealing (smaller ovens

means more opportunities to overlap baking and preparing).

• We also found that certain types of layers within the DNNs had more benefit

than others. Layers that had many weights to load were the best for hiding

preparation time with weight preloading.

If systems implement our weight preloading technique, the latency of DNN

computation can be reduced significantly. This will lead to AI applications that

respond to users more quickly, particularly in areas with low Internet access.

Baking with Bundles

Over the course of my research, I have learned a lot about measuring latency and

energy on these devices. This became the focus of my second project. In this project,

we examined some problems with what we referred to as bundle-based profiling.

When measuring the latency and energy for the layers of our DNNs, we want to

collect data about the individual layer as well as groups of layers. This is because

123

determining the latency and energy of a group of layers is not a simple sum of its

parts. This is a bit like if you were to try to bake four layers of lasagna in one pan

with four layers or four pans with one layer in each. In the second case, every time

we change pans, we might experience things like the oven cooling a bit when the

door opens and we need to heat the pan as well as the layers. These external factors

cause baking four layers in one pan to be very di!erent than one layer each in four

pans.

However, we found that the situationwas a little bit more complicated for DNNs.

On some devices, grouping the layers into a bundle would reduce the latency; on

other devices, bundles increased the latency. This becomes a problem when we

want to optimize, for instance, latency. During this optimization process, we look

at all posssible combinations of layers, and pick the combination with the smallest

latency. For a device whose bundle is larger than the sum of its parts, it looks

better to pick individual layers instead of the bundle. But this is a side e!ect of the

mathematical expression, and does not represent reality.

This would be a bit like if, for baking the four layers, we were told to bake all

four layers in the same pan. You and I, actually in the kitchen, would build all

four layers and put this into the oven at once, forming a bundle of 4 layers. But the

recipe writer, wanting to give the lowest bake time estimate, instead used the sum of

baking the four layers in the same pan separately. We would be very disappointed

with the cold center of our lasagna!

Unfortunately, this problem took quite a bit of profiling e!ort to uncover and

understand. Fortunately, the solution was quite straightforward. We could add

124

a check during our optimization search that ensures, for layers assigned to a de-

vice, the bundle values are used instead of the individual layer values. When we

implemented this, we found:

• Without bundles enforced, the latency can be mis-predicted. This causes the

layer assignment to be incorrect.

• In one case 1, the actual result is 1.2x slower than the estimate. This would be

like a recipe that guaranteed a cold center.

• In another case 2, the actual result was 1.3x faster than the estimate. This

would be like a recipe that guaranteed burnt lasagna.

• By considering bundles, we guarantee that the layer assignment is correct in

mirroring real-world conditions.

Improving DNN latency estimation will allow developers to make better de-

cisions about layer assignment. This will encourage more consistency and fewer

surprises when trying to optimize the experience for users.

Resting with E!ciency

One of the big discussions around AI has been about the massive energy require-

ments for maintaining these computers. This is a significant issue with broad e!ects,

and I’m glad my next project was able to focus on this. To do this, we exploited an
1Table 7.1 BW=1(5
2Table 7.2, BW=1.375(5

125

interesting feature on modern devices, frequency scaling. Frequency scaling allows

us to control the operating frequency of the device, or how fast it gets work done.

This is kind of like oven temperature: a high temperature may cook faster but also

increases the chances of burnt edges while a low temperature cooks slower and

more evenly, but too slow and you’ll need a snack before dinner is ready. There is a

“sweet spot” for oven temperature.

Similarly, for a computer operating frequency, a higher frequency means it can

get work done faster but consumes a lot of energy. A lower frequency means the

work gets done slower, and may be done so slowly that the energy starts going up.

For energy e"ciency, there is often a “sweet spot” setting for the device operating

frequency.

Up until now, I had profiled the devices for their latency and energy utilizing

the default settings (imagine just hitting a “lasagna” button on the oven and hoping

it picks the right temperature). Now, I added manual control of the operating

frequency to find energy-e"cient solutions. The goal was “minimize energy subject

to a maximum latency”. It is important to add that we require a minimum latency, or

else we might pick a very slow operating frequency and the user gets frustrated

when the device is slow to respond. We also explore “minimize latency subject to a

maximum energy”, which would be useful for mobile phones where we want fast

responses but don’t want to use too much battery life. Finally, we explored privacy

preservation, with the goal “minimize latency subject to keeping some layers private”,

which reduces the risk of sending personal information to a third party.

126

With this new knob of control, we ran experiments and came to some interesting

conclusions.

• Compared to picking just the fastest or just the slowest setting, our method

finds the “sweet spot” operating frequency somewhere in the middle to

optimize our goal.

• The “sweet spot” changes depending on which DNN we use. This would be

a bit like di!erent styles of lasagna, with di!erent number of layers, having

di!erent oven temperature settings.

• The “sweet spot” also changes depending on the goal, whether it be reducing

energy, reducing latency, or preserving privacy.

• Devices have built-in features that try to automate this, but they have a more

guess-and-check approach. Our technique that has complete information

about the DNN consistently improves or matches the result.

This system allows for us to decide “how” to run a DNN layer in addition to

“where”. By adding this, we can improve control over latency and energy use of AI.

Serving with Sustainability

Inmy lastmajor project, instead of focusing on energy, I focused on carbon emissions.

Carbon emissions is a key metric in assessing sustainability because it doesn’t just

measure the quantity of energy, but the quality of that energy.

127

Carbon emissions can be calculated from the energy using a number called the

carbon intensity, which gives the carbon emissions per unit of energy. The key

thing is that carbon intensity varies over time, both throughout the day and over the

course of the year. A common example is an electricity grid that has solar panels,

which provide low-carbon energy, as one source. During the day when the sun is

out, the grid’s carbon intensity is lower and it rises in the evening as the sun sets.

Similarly, the carbon intensity is lower in the summer when the sun is more intense

and rises in the winter.

Carbon intensity is also tied to a specific electric grid that services a particular

geographic location. In our experiments, we try to find the carbon-optimal layer

assignment when devices are in di!erent grids. We “minimize carbon subject to a

maximum latency”, to find a sustainable solution without annoying the user with

slow responses. This might be like if we had access to multiple kitchens, one with a

traditional oven and one with convection oven. Even though the temperature is the

same, the quality of the heat is di!erent. In what cases does it make sense to swap

between ovens? How does that change if the other oven is just downstairs or across

town?

During our experiments, we used data from di!erent grids including grids in

the Midwest and California. As a result, we found:

• When starting in a high-carbon grid, it makes sense to share the work and

utilize the low-carbon grid for at least some layers.

• As carbon intensity varies throughout the day, it’s possible to achieve lower

latency and lower carbon in some cases. Even though lower latency usually

128

means higher energy, the layer assignment can take advantage of low-carbon

areas to mitigate this.

• Energy-optimal and carbon-optimal solutions can di!er in many cases. It is

not enough to consider energy alone, but we do have the tools to consider

carbon and optimize for sustainability.

By considering various power sources, we can direct layer assignment to reduce

the carbon emissions. This helps to mitigate sustainability concerns about the

growth of AI applications.

10.6 Conclusion

As AI has been rapidly adopted in many aspects of our daily life, I have been

really motivated to explore opportunities to improve the systems that are used to

implement these. I’ve shown that thinking about these systems can lead to tangible

benefits, including getting faster answers (reducing latency) and preserving privacy

of user data. I’m also concerned with the growing energy demands for running

AI, and have shown that layer assignment can be an e!ective tool in addressing

energy and sustainability concerns. I am very optimistic about the future of AI

developments and believe there is an exciting opportunity to keep improving the

computing systems; I hope the reader joins my excitement!

	WISL Award Cover Page 2022
	Robert Public Chapter
	Contents
	Abstract
	Introduction and Motivation
	Related Works on Distributed Inference
	Latency Optimization
	Energy Optimization
	Dynamic Voltage and Frequency Scaling
	Carbon Footprint
	Areas of Improvement

	Summary of Contributions
	System Model for Distributed Inference and Global Latency
	Hardware System Model
	Deep Neural Network System Model
	Analytic Latency Model
	Profiling-Based Latency
	Comparison of Latency Models

	Base Integer Programming Model for Distributed Inference
	Notations
	Optimization Constraints
	Latency Objective Function
	Conclusion

	ODIWeP: Optimizing Distributed Inference with Weight Preloading
	Motivation
	Opportunity for Preloading Weights
	From Base ILP to ODIWeP
	Results
	Conclusion

	DIME: Distributed Inference Model Estimation for Bundle Profiling
	Motivation
	Bundle-Based Profiling
	From Base ILP to DIME
	Results
	Conclusion

	FreDDI: Frequency-Driven Distributed Inference
	Motivation
	Energy Profiling
	From Base ILP to FreDDI
	Results
	Conclusion

	CADI: Carbon-Aware Distributed Inference
	Motivation
	Carbon Intensity
	From Base ILP to CADI
	Results
	Conclusion

	Chapter for the Public
	Background on Artificial Intelligence (AI)
	What's in a Layer
	What's the Deal With All These Computers?
	Useful Objectives
	Finally, Some Results!
	Conclusion

	Conclusion
	Bibliography

