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1 EXPLAINING MY PHD RESEARCH TO THE
GENERAL PUBLIC

This section is written as part of the Wisconsin Initiative for Science Literacy (WISL)
program to explain PhD Research to the general public. Most of the work contained further
in this defense, as well as the majority of PhD research in the scientific community, is
focused towards an audience with a specific technical background. However, many of my
friends, family, as well as others that are excited to learn more about what I have been
doing for the past six years should be able to see the work I've conducted without having
to go through all the jargon, technical details, and background of numerous Computer
Engineering classes. Additionally, the scientific community should strive to excite future
young minds to pursue the fields and see the excitement that research allows without
digging through hundreds of pages of technical detail. I am excited to be a part of this
initiative to dedicate a chapter of my research to explain things through the lens of the

everyday person not studying Computer Engineering or Computer Architecture.

1.1 Background

What do you think of when you hear the word “computer?” You probably think of a big
rectangular box next to a desk, laptop, tablet, or maybe a large company datacenter/server.
These are used in our everyday life to solve complicated problems, store our information,
or entertain us through video games or streaming entertainment. However, most of the
things we think that the whole laptop, desktop, smartphone, etc. are doing are in fact done

within the processor. You may have heard the term CPU before, which stands for Central



(a) Desktop — The actual desktop computer (b) Inside a desktop computer. The processor

is shown in the red box. The monitors on sits under the big radiator shown in the red
the desk only show you what the computer is box.

working on.

(c) A different angle of the CPU cooling ra- (d) The processor is only visible after remov-
diator (blue square), which sits on top of the ing the radiator. The size of the the computer’s
processor (red square). The radiator keeps brains, or processor (red square), compared
the processor from overheating. to the size of my hand (orange square).

Figure 1.1: Photos of my desktop computer, zooming in from the desktop housing (a), to
inside the desktop housing (b), all the way to the actual processor (d). Computer architects
are responsible for designing the circuitry within the processor shown in photo (d).



Processing Unit. Whenever you do something on your computer, the CPU is almost always
the part responsible for making your commands happen. The CPU determines when and
how your “enemy” or “opponent” moves in your video games, determines what to do next
based on your mouse movements, solves difficult math problems, searches for files on your
computer, determines what to display on your screen when you surf the web, and much
more. The CPU can be thought of as the “brains” of a computer. For simplicity, whenever I
use the terms “CPU,” “processor,” and “computer,” think of the brain. It may be surprising
to learn that this brain is only about the size of the square created by your finger outline if
you touch your index finger to your thumb on the same hand (See photos in Figure 1.1)!
My field of research is in “computer architecture,” which is responsible for designing and
upgrading this processor.

Computers operate by running “computer programs,” also known as “software.” Soft-
ware tells the processor what operations (also called instructions) to perform, and in what
order. But what instructions are available for the software programmer to use? This is
where “hardware” comes in, which is the focus of computer architecture. Hardware is a
group of electrical circuits that performs those instructions, such as addition, subtraction,
multiplication, comparisons, reading data, and writing data. A few examples are things

s

like “add these two numbers together,” “move the number from location A to location B,”
or “tell me if number C is less than number D.” That’s it. You might be asking yourself right
about now “but how can a computer solve so many complicated problems so quickly if all
it can do is simple operations?” The answer is because it can do these operations extremely

quickly. A modern processor can compute a few billion of these operations every second.

So, although the operations are simple, by breaking down big problems into a series of



these small operations, the processor can still solve the problems much faster than we can.
The processor has no idea what it is doing — it will blindly do the operations it is told to
do. That is why one philosophical view is that computers are not very smart, they're just
fast at what they do. Once the hardware has a circuit built to perform an instruction, the
programmer can group sequences of these instructions together to perform complex tasks.

As a computer architect, I work on both designing individual circuits to perform opera-
tions, and linking existing circuits together in new ways to be better than prior designs.
I organize the circuits and components to detail how a new processor should be built,
just like building architects design the details of a new building’s blueprint. Computer
architects attempt to make the processor faster, more powerful in its computation ability,
use less energy, and modify anything to optimize it for both today’s and tomorrow’s needs.
Computer architects also have to be aware of and involved with the software community
to understand what requirements and what building blocks they wish they had in future

Processors.

1.2 Motivation Behind Accelerators

Processors are extremely powerful because they are extremely general-purpose. By this,
I mean that there is an infinite number of computer programs that a processor will be
capable of running. Software can be updated, and the processor will still be able to run it.
You can create a new program, and the processor will be able to run it. It is only up to the
developer’s imagination of how to combine these operations together, the computer will be

able to run it. It is flexible enough to run any valid computer program across any domain,



whether video games, company software, warehouse management, medical record storage,
etc. However, this flexibility comes at some cost. By having only basic building blocks,
sometimes you need very long sequences of building blocks to perform a task. If that
task is performed often enough, the CPU is simply repeating the same blocks over and
over again. However, if the computer knew how to perform the task (rather than only
the small building blocks), it could perform that task through a single command, rather
than by a sequence of many commands. This is where “accelerators” come into play. An
accelerator is a circuit that is specialized to do a single task extremely well. The benefit of
accelerators is that they are fast and efficient. Their downside is that they only know how
to perform that one task. If the same task needed to be even slightly adjusted or modified,
the accelerator cannot perform that task at all, and must go back to using basic instructions.
This is why accelerators are typically only built when it is fairly certain that (a) this task is
used often enough to justify adding it (otherwise it will just sit doing nothing most of the
time), and (b) that the task will not need to be updated or changed in the near future.
When accelerating large tasks involving lots of work (such as taking the video captured
by your smartphone camera and converting it into a movie file), accelerators are built
far away from the processor core (the “heart” or center of the processor), and are called
loosely-coupled accelerators. However, when accelerating fine-grained tasks (something
like renaming a computer file) where the time it takes to perform operations cannot afford
to move data far away from the processor, these need to be tightly-coupled accelerators.
Being tightly-coupled makes data movement faster and should be justified only if used
frequently, as it takes the place of other circuits that could be close to the core. My work

focuses on tightly-coupled accelerators, as it is a new and emerging type of accelerator that



has the potential to provide significant speedups for many emerging computer needs, such

as machine learning, artificial intelligence, and server optimization.

1.3 Contribution 1-Performance Modeling of Tightly-Coupled

Accelerators

I started working on tightly-coupled accelerators because of their potential future impact.
There is a large amount of excitement in the computer field around artificial intelligence (AI)
and machine learning (ML). These are software techniques to try to predict information
about either the here-and-now or the future based on information seen in the past. Al
and ML work by showing thousands or millions of examples to a computer, telling the
computer what the example is, and having the computer try to find similarities in each of
the examples. Eventually, the computer can correctly understand the details or “features”
that made that example what it was. For example, a computer could be shown several
different CAT scan images of cancerous and non-cancerous regions. After seeing enough
examples that doctors have determined cancerous and non-cancerous, the computer will
determine similarities between the cancerous images, and similarities between the non-
cancerous images. The idea is that when the computer is presented with a new CAT scan,
it can say whether it looks more like the cancerous or non-cancerous images it has seen
in the past. Websites like Amazon, Netflix, or Youtube can also use Al and ML to predict
what movies to recommend to you based on what you have stated you like and don’t like.

All of these Al and ML tasks can be calculated by the computer through a series of



matrix-matrix multiplications. Simply put, the computer performs mathematical operations
to understand similarities and dissimilarities. Since many different AI and ML tasks all
perform these mathematical operations, it makes sense to build an accelerator to perform
this task. However, as computer architects, we need to decide how much faster this
accelerator would run compared to the CPU as it runs today. This task is more difficult than
it may originally seem. Processors have become more complex over the years. Computer
architects have optimized processors to run instructions out-of-order as well as predict
what the computer program will attempt to do next. The computer processor can perform
multiple computer program instructions simultaneously before it even knows if it should
perform those instructions. An example might be predicting the value of a complex
mathematical formula before the final calculation is finished. The reason the processor does
this is because correct predictions make the program run faster. In the end, any mistakes the
processor made in guessing (called incorrect execution) will always be undone, ensuring
the program still ran correctly.

However, having a complex processor brings challenges for computer architects to
integrate additional accelerators into the processor. A complex way for an architect to
address this issue would be to design an accelerator that can always operate no matter what
else is going on around it, and be able to recover from any mistakes made by the processor
in guessing where it should go next. A less complex way for an architect to address this
issue would be to design an accelerator that waits for the processor to be certain that the
task should be performed, and only resume its guessing work after the accelerator has
finished its task. Having this ‘wait if unsure’ policy means that the accelerator never has to

correct mistakes, but waiting will slow down the processor from useful work it could have



been doing while the accelerator ran.

The architect could design multiple complex and simple accelerator versions, see how
they do, and decide which one to use in the next processor. However, designing accel-
erators that will not be used takes time and will waste several months of engineering
work. Additionally, to actually build processors/accelerators costs millions of dollars per
different design. Throwing out designs after building them would waste lots of money.
For this reason, computer architects use simulators. These simulators can be thought of as
a computer program that is acting like a computer. So really, it’s like running a computer
within your computer. The reason this is useful is that you can make modifications to your
simulated computer without having to build or pay for a new computer. The downside
is that you have to tell the program every detail about your simulated computer, how
the accelerator interacts with the other components around it, and it runs thousands of

times slower than the computer itself. Also, the architect needs to know enough about the
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Figure 1.2: Estimated performance speedup for a tightly-coupled accelerator. Our model is
slightly different than the simulator results, but the overall trend and insights are main-
tained. The detailed simulator took over 100 hours, and our mathematical formulas took
under 5 minutes.



computer simulator to be able to make the modifications required to even test their new
designs. This can take hundreds of hours to complete.

My contribution is to create mathematical formulas to estimate the impact of different
designs on the execution time of any specific program. Figure 1.2 shows the output from
our mathematical formula as compared to the detailed simulator. Instead of building the
hardware for millions of dollars, or spending dozens of hours modifying a simulator, an
architect can use the formulas that I've created in order to get a good estimation of the
overall speedup of various designs in the matter of seconds or minutes. Although these
mathematical formulas aren’t as exact as the detailed simulator, by having a good estimate,
the designer can be confident which design is worthwhile to try to model in the simulator
or to build without wasting time focusing on designs that would have been quickly thrown
out through simple mathematical estimations. This allows designers to potentially save
millions of dollars and hundreds of engineering hours, allowing for a much more rapid

time to deploy these accelerators into real-world models!

1.4 Contribution 2 - Removing Unnecessary Data Movement

in Tightly-Coupled Accelerators

So far, I've been talking about processors performing calculations, such as doing addition,
multiplication, or matrix-matrix multiplication operations. However, in order to perform
these operations, the data that is being operated on (also called operands), needs to be

supplied to the units doing the computation. This can be thought of as a blender making a
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smoothie — the blender will mix all the ingredients, but you have to bring the ingredients to
the blender for a smoothie to be possible. All data in a computer is stored through memory.
Memory is simply the storage of numbers. Typically, in order to perform operations in
a processor, data is transferred from memory into something called a Register File (RF).
Anytime an operation is performed, the operands must come from the RF, and if the data is
not currently in the register file, then it must be brought from memory into the RF. The RF
can only hold a certain number of operands, so if there is not enough space, then something
needs to be removed from the RF (and back into memory if it needs to be saved) before a
new value can be brought back in. The RF gains the most usefulness when a value is used
many times in the RF before it is removed. This eliminates the need to keep transferring
the value to and from memory.

A second analogy could be someone operating a carnival dart game, where small and
large prizes can be won. All prizes are originally kept in the back room, which in our
analogy is memory. The worker brings in a basket from home, which is the RF in our
analogy. Contestants are more likely to win small prizes, so the worker fills their basket
with two boxes, one for each small prize — pencils and rulers. In reality, there might be
dozens of items in the RF, but for simplicity, we’ll say there are only two. When a contestant
wins a small prize, the worker simply gives the small prize to the winner from the basket
without having to go into the back room. However, when a contestant wins a large prize,
like a stuffed animal, the worker goes to the back room to get the prize. If the worker is
required to give all prizes from the basket, which can only fit two boxes, they might remove
the ruler box to replace it with the stuffed animal box. However, as more small prizes

are won later on, the worker will have to go to the back room again to replace the stuffed
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Figure 1.3: Energy consumption moving data in tightly-coupled accelerators using the
old method of the Basket/RF (left bar per pair) compared to using our proposed method
(right bar per pair). Lower is better. Overall height is decreased for every pair, showing a
reduction in energy consumption, which is good.

animal box with the ruler box. Here, the requirement to pass prizes from the basket forced
the worker to remove an item they knew they would likely use again soon.

This is how operand passing has been done for decades — forcing all operands (prizes)
to be passed to the processor through the register file (basket). However, we make the
argument for many of the proposed accelerators for today, such as matrix-matrix multipli-
cation, there is not enough reuse to warrant using the basket, or register file. Alternatively,
the accelerator/worker could use a method to simply take a large prize from the back room,
never touching the basket. However, the downside of bypassing the basket comes when
contestants win large prizes consecutively. In that case, bringing the entire stuffed animal
box from the back room could have spared the worker the extra trips. Our analysis shows
that there is not as much reuse in these designs, and that significant energy can be saved
in the processor by eliminating the cost to fill and replace items in the basket, even if the
backroom is used more often. Figure 1.3 shows the reduction in energy consumption of

our method (denoted NoRF_M$) compared to the RF method for various tightly-coupled
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accelerators. This creates a big incentive to move away from the long-lived tradition of
using the RF as the only means to operate on data. We also created a clever technique to
prevent multiple trips to the large prize box without using the basket if consecutive large
prize winners are expected. Using our technique instead of the basket operates at a fraction

of the energy consumption as the old technique.

1.5 Contribution 3 — Security within the Tightly-Coupled

Accelerator

It is common to hear on the news about security breaches or hackers that have been allowed
to see information from computers that they did not have permission to see. Security is
always a cat-and-mouse game where hackers are trying to find new techniques to extract
information, while researchers are trying to come up with ways to close loopholes before
they can be exploited. In 2018, a new classification of hardware security vulnerabilities
was discovered. The two large exploits were called Spectre and Meltdown. These attacks
took advantage of a process computer architects had been using to increase performance
for decades called speculative execution. Speculative execution means that the computer is
predicting what it should do next before knowing for sure that it should be done. It’s a
strange process to think about, because programs are written in-order, or sequentially. The
issue arises when the processor hits a “fork in the road,” and it will take a while before
it learns which path to take. It could simply wait at the fork until it knows for sure, or it

could pick one of the two paths, and later be told whether or not it was correct. When it
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predicts correctly, the program will run faster. In the past, if it was incorrect, all operations
it had done were thought to be erased, and the processor would simply go back and go
down the correct path.

Here’s an analogy: let’s say you are doing a scavenger hunt on a team in the woods
with many forks in the road. Each fork has a security guard and a hard puzzle to solve
which tells you which direction to go. Your team members communicate via cell phone
which path to take, and you're looking for specific items. When you hit a fork in the road,
you call your team, tell them the puzzle, and they start to solve it. To save time, you guess
which path is the correct one, and start searching for items. You get a call back at some
point to determine if you went down the correct path or not. If you went down the correct
path, you continue on your way. If you did not, you need to backtrack to the fork, at which
point the security guard will take away any items that you found on the wrong path. The
vulnerability comes when researchers found a way to slingshot a single item (1 Byte, or 8
bits of a secret) from the incorrect path into the correct path. So even when passing the
security guard, the searcher did not have any items on them, and the security guard let
them go. They could then later pick the item up after changing direction into the new path.
A cheater may be able to exploit this to cheat during the scavenger hunt. Figure 1.4 shows
the attack. The math problem is the fork in the road, and the scavenger went down the
"YES’ path, slingshot the sensitive data (such as a password letter) from the "YES" to 'NO’
path, and later went back to the NO path once the math problem was completely solved.
Since the searcher no longer has the value in their pockets after using the slingshot, the
security guard does not catch the cheater.

Now let’s say we want to create an arbitrary accelerator into the processor design. You
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Computer Program:
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Figure 1.4: Example of Spectre-like attack. Even though the sensitive data is supposed
to be discarded once passing the security guard, the attacker found a way to slingshot’
information from the sensitive data. Since the attacker doesn’t physically hold any values,
the security guard lets them through. Doing this multiple times eventually tells the attacker
"MyPwD_is3’

might want to do this in order to make a frequently-used computer program run faster.
Building this new accelerator is as if instead of you wearing a standard uniform with only
a single pocket for the security guard to check, you're allowed to wear any uniform you
want, which may have secret compartments. If the security guard only knows how to check
a single type of pocket, the cheater could wear a hat, for instance, and stick hidden items
in their hat without being detected by the guard. This is even worse than the slingshot
case, because instead of a single item being stolen, you could stash as many items as
possible for each wrong path. The benefit, however, to having an arbitrary accelerator
would be huge in the computer architecture community, as you could accelerate virtually
anything you want, making programs much faster. This impact would be even larger if
the accelerator could be switched in and out. Although it may sound like fantasy to have
circuits and physical parts that can change within a computer, there’s a technology called
Field-Programmable-Gate-Arrays (FPGA) that has the capability to implement a desired

circuit, and can later be reconfigured to physically implement a different circuit. If this
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Figure 1.5: Same attack as Figure 1.4, but this time the attacker has a hidden pocket,
containing the entire password ‘"MyPwD_is3” — Our security rules prevent the searcher
from having pockets that it doesn’t know about, preventing this much faster and more
detrimental attack.

technology could be combined into the processor as a tightly-coupled accelerator, then
the same FPGA hardware could implement an infinite number of accelerators, where the
programmer can choose which accelerator to use for their specific program.

The risk of having any arbitrary accelerator is clear in the analogy of being able to
stash lots of secret information without the security guard’s detection. Our work solves
this problem by making rules that the accelerator designer must use in order to run that
accelerator. For example, in our analogy, an outfit might only be allowed zipper pockets or
open pockets, but not be allowed stitched-shut pockets or hats. The security guard then
knows exactly what to look for. In the analogy this might be silly, but from the hardware
perspective, certain circuit components that are allowed to hold information long-term
(called flip-flops) can be required to be connected to a wire from the CPU that clears all
data from wrong paths before it can be stolen. If the designer does not follow the rule, then
the circuit cannot be loaded. If the rule is followed using the trusted, safe, building blocks
we provide, we can make certain guarantees about safety.

This set of rules can be extremely powerful. If a processor company such as Intel or
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AMD wants to design accelerators, by following our rules, they can make certain guarantees
about the security of their accelerators. Alternatively, this allows for the possibility of even
allowing the everyday programmer to make whatever accelerator they want. Tradition-
ally, hardware is designed up front and not changeable once it is shipped. This forces
programmers to use the existing tools to make their designs, but having the possibility to
make their own hardware could lead to significant benefits in everyday computing. By
having the security check rules in place, companies like Intel or AMD may be able to have
reconfigurable hardware to accelerate many tasks without risking someone with malicious

intent using that hardware to obtain secret information.

1.6 Concluding Remarks and Future Work

The focus of my work is tightly-coupled accelerators, which are specialized circuits to
significantly speed up programs within a general-purpose processor. I first created a series
of mathematical formulas to estimate the benefits of various accelerators without the need
for many hours of detailed simulation or millions of dollars to test. Second, I demonstrated
how data movement in these tightly-coupled accelerators should not follow the same rules
that computer architects have been using for decades to move data, and that our method can
save significant energy without compromising performance. I lastly created a framework
to allow arbitrary tightly-coupled accelerators to be built in a way that will guarantee that
speculative execution attacks are not more detrimental.

In the future, I hope to see this work used by processor companies that will allow

both the general processor instructions (such as addition, subtraction, multiplication,
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comparisons, etc.), as well as a reconfigurable accelerator instruction that the programmer
can use for anything they would like. This would be a huge move forward in the history
of processors, as a general-purpose processor could be specialized in millions of ways
without losing its existing generality or having to incorporate millions of accelerators at
design-time. That means that a processor built in 2025, for example, could be configured
to specialize for a program invented in 2027! I hope this work begins the journey of a new

era of accelerators and computing.
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